ccFOUND Archiwum
10 месяцев

Определение временной стоимости денег

Ценность денег во времени - это концепция, согласно которой деньги стоят больше сегодня, чем в будущем. УЧЕБНАЯ ЦЕЛЬ Определите переменные, используемые для рассчета временной ценности денег ГЛАВНЫЕ ТЕЗИСЫ Основные положения - Получить $100 сегодня лучше, чем получить $100 в будущем, потому что вам не нужно ждать свои деньги. - Деньги сегодня имеют свою ценность (настоящая стоимость, или PV), а деньги в будущем имеют свою ценность (будущая стоимость, или FV). - Изменение стоимости денег после одного года называется процентной ставкой (i). Например, если деньги сегодня стоят на 10% дороже через год, то процентная ставка составляет 10%. Основные термины - Настоящая стоимость (PV): Стоимость денег сегодня. - Процентная ставка (i или r): Стоимость отсутствия денег в течение одного периода или сумма, выплачиваемая по инвестиции в год. - Будущая стоимость (FV): Стоимость денег в будущем. Одно из наиболее фундаментальных понятий в финансах - это временная ценность денег. Оно утверждает, что деньги сегодня стоят больше, чем деньги в будущем. Представьте, что вам повезло, и к вам подходит кто-то и говорит: "Я хочу подарить вам $500. Вы можете либо получить $500 прямо сейчас, либо я могу дать вам $500 через год. Что бы вы предпочли?" Предположительно, вы бы попросили получить $500 прямо сейчас. Если вы взяли бы деньги сейчас, вы могли бы использовать их, чтобы купить телевизор. Если же вы выбрали бы получить деньги через год, вы бы все равно могли использовать их на покупку того же телевизора, но есть определенная стоимость. Телевизор может быть не в продаже, инфляция может означать, что телевизор теперь стоит $600, или просто вы должны были бы подождать год, чтобы это сделать, и вам нужно было бы получить оплату за ожидание. Поскольку нет дополнительной стоимости за получение денег сейчас, вам стоит взять их прямо сейчас. Однако существует некоторая стоимость, которая могла бы быть выплачена вам через год и иметь для вас ту же стоимость, что и $500 сегодня. Предположим, это $550 - вы абсолютно безразличны между получением $500 сегодня и $550 через год, потому что даже если вам придется подождать год, вам кажется, что $50 стоят ожидания. В финансах для каждого из этих чисел существуют специальные названия, чтобы обеспечить понимание ситуации. $500, которые вы получаете сегодня, называются Настоящая стоимость (PV). Это то, что деньги стоят прямо сейчас. $550 называется Будущая стоимость (FV). Это то, какую стоимость представляют $500 сегодня после истечения времени (t) - один год в данном случае. В этом примере деньги с PV $500 имеют FV $550. Ставка, которую вам придется получать за год, чтобы не иметь денег, называется Процентная ставка (i или r). Все четыре переменные (PV, FV, r и t) связаны в уравнении. Не беспокойтесь, если это кажется запутанным; концепция будет изучена более подробно позже. FV=PV⋅(1+rt)=⋅(1+) Формула простых процентов: Простые проценты - это когда проценты начисляются только на первоначально вложенную сумму (основной капитал). Вы не зарабатываете проценты на проценты, которые вы ранее заработали.
Ценность денег во времени - это концепция, согласно которой деньги стоят больше сегодня, чем в будущем. УЧЕБНАЯ ЦЕЛЬ Определите переменные, используемые для рассчета временной ценности денег ГЛАВНЫЕ ТЕЗИСЫ Основные положения - Получить $100 сегодня лучше, чем получить $100 в будущем, потому что вам не нужно ждать свои деньги. - Деньги сегодня имеют свою ценность (настоящая стоимость, или PV), а деньги в будущем имеют свою ценность (будущая стоимость, или FV). - Изменение стоимости денег после одного года называется процентной ставкой (i). Например, если деньги сегодня стоят на 10% дороже через год, то процентная ставка составляет 10%. Основные термины - Настоящая стоимость (PV): Стоимость денег сегодня. - Процентная ставка (i или r): Стоимость отсутствия денег в течение одного периода или сумма, выплачиваемая по инвестиции в год. - Будущая стоимость (FV): Стоимость денег в будущем. Одно из наиболее фундаментальных понятий в финансах - это временная ценность денег. Оно утверждает, что деньги сегодня стоят больше, чем деньги в будущем. Представьте, что вам повезло, и к вам подходит кто-то и говорит: "Я хочу подарить вам $500. Вы можете либо получить $500 прямо сейчас, либо я могу дать вам $500 через год. Что бы вы предпочли?" Предположительно, вы бы попросили получить $500 прямо сейчас. Если вы взяли бы деньги сейчас, вы могли бы использовать их, чтобы купить телевизор. Если же вы выбрали бы получить деньги через год, вы бы все равно могли использовать их на покупку того же телевизора, но есть определенная стоимость. Телевизор может быть не в продаже, инфляция может означать, что телевизор теперь стоит $600, или просто вы должны были бы подождать год, чтобы это сделать, и вам нужно было бы получить оплату за ожидание. Поскольку нет дополнительной стоимости за получение денег сейчас, вам стоит взять их прямо сейчас. Однако существует некоторая стоимость, которая могла бы быть выплачена вам через год и иметь для вас ту же стоимость, что и $500 сегодня. Предположим, это $550 - вы абсолютно безразличны между получением $500 сегодня и $550 через год, потому что даже если вам придется подождать год, вам кажется, что $50 стоят ожидания. В финансах для каждого из этих чисел существуют специальные названия, чтобы обеспечить понимание ситуации. $500, которые вы получаете сегодня, называются Настоящая стоимость (PV). Это то, что деньги стоят прямо сейчас. $550 называется Будущая стоимость (FV). Это то, какую стоимость представляют $500 сегодня после истечения времени (t) - один год в данном случае. В этом примере деньги с PV $500 имеют FV $550. Ставка, которую вам придется получать за год, чтобы не иметь денег, называется Процентная ставка (i или r). Все четыре переменные (PV, FV, r и t) связаны в уравнении. Не беспокойтесь, если это кажется запутанным; концепция будет изучена более подробно позже. FV=PV⋅(1+rt)=⋅(1+) Формула простых процентов: Простые проценты - это когда проценты начисляются только на первоначально вложенную сумму (основной капитал). Вы не зарабатываете проценты на проценты, которые вы ранее заработали.
Show original content

0 users upvote it!

1 answer